Fitting Proteins into Metal Organic Frameworks

نویسندگان

  • Daishi Fujita
  • Makoto Fujita
چکیده

Proteins are no longer just ingredients for biologists: Proteinaceous materials are gradually stepping into the spotlight as highly functional next generation materials, despite the fact that “material science” has previously mainly been explored by chemists. In the September 16th issue of Journal of American Chemical Society, Tezcan and co-workers report an interesting methodology to prepare a novel three-dimensional (3D) protein crystalline material utilizing the metal organic framework (MOF) approach (Figure 1). This work has the potential to be a milestone for the next decade, as these proteinaceous MOFs may overcome several major drawbacks of conventional proteinaceous materials. Obviously, the most attractive feature to using protein building blocks to forge 3D porous materials is the wide variety of structures and functions that inherently exist in proteins, particularly catalysis, electron transfer, and molecular recognition. Emulating protein function with synthetic molecules remains a daunting challenge, and thus, fabricating materials with proteins incorporated has so far best provided the benefit of proteins’ stunning functions. There have already been several successful attempts to directly exploit some porous protein single crystals as materials toward specific purposes. These more typical protein crystals rely structurally on weak surface intermolecular interactions, meaning they are unstable. Poor mechanical strength is an unavoidable limitation to the scope of their application. When the crystallization conditions were optimized, the authors obtained the world’s first proteinaceous MOF crystal, and a rare rationally designed crystal structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation

This  article  provides  an  overview  on  preparation,  design,  crystal structure  and  properties  of  some  metal-organic  frameworks  of carboxylate coordination polymers mixed with pyridine-functionality linkers  prepared  in  our  laboratory.  The  article  covers  coordination polymers  in  two-  and  three-dimensional  supramolecular architectures. The reported coordination polyme...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

Redox-Active Metal-Organic Nanostructure Polymers and Their Remarkable Electrochemical Behavior

A number of redox-active coordination polymers (CPs) or metal- organic frameworks (MOFs) have been successfully synthesized using transition metals and bridging ligands. This article aims to deal with gathering the aforementioned disperse issues regarding the electroactive CPs. It also goes towards illustrating the effects of various factors on the electrochemical behavior of CPs including...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II) metal-organic frameworks

Metal-Organic Frameworks (MOFs) represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc)2(H2O)2∙(DMF)2]n (1) and [Zn2(1,4-bdc)2(dabco)]·4DMF·1⁄2H2O (2), (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diaza...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015